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THEORY OF HEAT- AND MASS-EXCHANGE (THERMOGRA PHIC)
METHODS OF RESEARCH

V. M. Kazanskii UDC 541,11

The presently adopted means of analysis of thermograms and derivatograms use far from all the infor-
mation on the properties of the specimen which these curves contain, The present report is devoted to the
derivation and analysis of equations connecting a thermogram and derivatogram with the equilibrium and
transfer characteristics of a disperse substance and the conditions of its drying.

The equations obtained in the report show that the form of the thermogram and derivatogram is deter-
mined by three groups of factors: the motive force of mass transfer, i.e., the difference in chemical poten~
tials in the specimen and air, the resistance to the motion of liquid and vapor inthe specimen, and finally,
the conditions of external mass exchange in the surrounding medium. Thus, the individual properties of the
object of study, reflected by the form and magnitude of the thermogram and derivatogram, depend on two
characteristics of the specimen: the chemical potential of the bound liquid in the specimen ¢he equilibrium
characteristic) and the mass conductivity of the specimen ¢he transfer characteristic). Inthis case the ex-
perimental conditions, as follows from the equations obtained, determine which properties of the specimen
— equilibrium or transfer properties — most strongly affect the form of the thermogram and derivatogram.

The equations obtained make it possible to solve twobasic problems of thermographic analysis, The
first consists of finding the thermogram and derivatogram from the known properties of the specimen. This
in turn makes it possible to make a qualitative or semiquantitative estimate of the properties of the specimen
from the characteristic sections of the thermogram (straight, exponential, etc.). The second problem con-
sists of the quantitative determination of the characteristics of the material from the known thermogram or
derivatogram. '

Typical cases of the application of the equations obtained for the analysis of thermograms and derivato-
grams of drying are considered.

Dep. 337-77, November 16, 1976.
Original article submitted October 20, 1975,

THERMOPHYSICAL PROPERTIES OF CARBON-FILAMENT
MATERIALS IN THE RANGE OF 10-400°K

L. S. Domorod, L. E. Evseeva, UDC 536.48.083
and S. A, Tanaeva

The coefficients of thermal conductivity, thermal diffusivity, and heat capacity of carbon-filament mate-
rials along and across the filament — filler in the temperature range of 10-423°K are studied in the report.

The method and the experimental setup are described in sufficient detail in [L]; it should only be noted
that the study of the thermal properties of the materials was performed by the quasisteady composite method,
The maximum error was 7-8%. The thermophysical properties of a carbon-filament material (specific weight

+*All-Union Institute of Scientific and Technical Information.

‘Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 32, No, 6, pp. 1115-1128, June, 1977.
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Fig. 1. Dependence of thermal conductivity of carbon-filament ma-
terials along A and across A, the filament (@) and thermal diffus-
ivity of carbon-filament material along a and across @, the filament
(b) on temperature: 1) after single cooling; 2) after fivefold thermal
shock; 3) after 10-fold thermal shock. T, °K.

144 °10° kg/m®, volumetric content of resin 31,8%, degree of solidification of resin 98,9%) were studied as a
function of the temperature, number of cycles of temperature shocks (5 and 10), and the direction of the heat
flux (along #and across 1 the filler). The experimental data are presented in Fig. 1. As seen from the figure,
the coefficient of thermal diffusivity @ behaves in an anomalous way. The anomaly is expressed in the appear-
ance of a maximum, more expressed for the specimen along the filament, in the region of hydrogen —nitrogen
temperatures. The temperatures at which the curves ¢ (T) and ¢, (T) have maxima coincide with the points of
inflection of the curves A (T) and A (T).

The temperature dependence of ¢ and @, is explained by the peculiar temperature dependence of the
phonon mean free path of the composite. One can assume that two processes take place in parallel in the ma-
terial under study, from 40 to 80°K along the filament and from 40 to 120°K in the case of the transverse
arrangement of the filament, under the effect of residual and thermal stresses caused by the anisotropy of the
coefficient of thermal linear expansion of the carbon-filament material (negative along the filament and pogi-
tive across it) and the considerable difference between the thermal coefficients of the filament and the binder:
the formation of higher-order supermolecular formations from the microfibrils of the carbon filament and the
transition of the binder film into a crystalline state with the formation of crystallites.

These new supermolecular structures and crystallites possess considerable anisotropy of properties
along and across the filament and along and across the binding film, respectively.

Since the developing anisotropy of properties is a consequence of thermal stresses whose magnitude and
direction depend on the temperature range, it also has a variable character.

Dependences of the coefficient of thermal conductivity A of the carbon-filament structure on the temper-
ature following cycles of temperature shocks (5 and 10) are presented in Fig, 1.

As seen from the figure, the values of the thermal conductivity decreased by almost five times following
five cycles in comparison with the injtial data. This is explained by the fact that cracking of the binding film
in the radial direction with respect to the carbon filament and splitting of the fibrils of a carbon filament into
microfibrils take place under the effect of the thermal stresses arising under the effect of the cycles of ther-
mal shocks.

Following 10 cycles the dependences A(T) acquire the form characteristic of the A(T) curves of dry dis-
persed media, i.e., the carbon-filament material changes from a monolithicmaterial into a bound dispersed
system with open pores.

The coefficients of thermal diffusivity also change considerably under the effect of thermal shocks: the
maximum of thermal diffusivity disappears and following 10 cycles the dependences 2| (T) and a1 (T) also have
the form:characteristic of the coefficient of thermal conductivity ofdispersed bound systems with open pores.

~Experimental data onthe dependence of the specific heat.capacity onthe temperature and cycles of ther-
mal shocks are also presented in the report.
LITERATURE CITED

i I L. L. Vasgil'ev and S, A, Tanaeva, Thermophysical Properties of Porous Materials [in Russian], Nauka
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HEAT EXCHANGE DURING BOILING OF SEAWATER IN
A FILM FLOWING DOWN OVER A ‘HORIZONTAL PIPE

V. N. Slesarenko UDC62%.1,016.4

Heat exchange during the boiling of seawater is studied on an experimental installation containing anevap-
orator made of a vertical array of horizontally arranged pipes anda sprinkler [1], The tests established that
the dependence of the heat-transfer coefficient o, remains constant in the entire range of variation of the
sprinkling densities I'y = 200-2000 kg/ (m - h) for all values of the heat fluxes ¢ = 10-130 kW/m?, pressures
p = 30-160 kPa, concentrations b = 3,5-16%, and pipe diameters d, =16, 24, and 32 mm,

In this case with an increase in the heat flux one observes an increase in the average values of o, with
retention of the form of the dependence o, = f('y). For example, a, = 6000 W/m?+°C for q=30 kW/m? and
ay =10,000 W/ m?.°C for q =100 kW/m?, With q and b constant the values of the heat-transfer coefficient ob-
tained are higher with an increase in pressure. The infensification of heat exchange during boiling in a hori-
zontal film depends to a greater degree on q, which determines the nature of the vapor formation. Inthe re-
gion of small q one observes an evaporation mode with very slight formation of vapor bubbles, while with an
increase in q a transition o developed bubble boiling occurs, The transition zone is estimated by the quantity

r_ —0.2 i 2.3
g’ =95.8p (l—l—wo) . _ , @®

Here the heat-transfer coefficient for seawater is
9<q" %~¢"Fand g>¢', 2;~g" %,

which is explained by the strong foaming in the evaporation mode, the effect of which is suppressed during
bubble boiling.

The presence of ordered motion of the liquid film leads to the premature washing off of the first bubbles
which form, carried off by the film and destroyed beyond the limits of the heating surface,

The sizes of the vapor bubbles and their number are determined by both q and I'y. The generation of
bubbles takes place at a certain film thickness, which depends on the pipe diameter and the sprinkling density,
which comprises 400-600 kg/(m <h), corresponding to 6 = 0.35-0,5 mm. The decrease in the heat-transfer
coefficient with a decrease in pressure for q < q' is connected with an increase in the viscosity of the liquid,
producing an increase in the thickness of the laminar wall boundary layer which creates the main thermal re-
sistance., For the region of q > q' the vapor bubbles turbulize the boundary layer, and therefore a certain in-
crease in the heat-transfer coefficient in comparison with the evaporation mode takes place with an increase in
p, other conditions being equal. The sizes of the separation diameter of the vapor bubbles increase with a de-
crease in pressure [2]. An analysis of the data obtained shows that the stability of heat exchange depends for
the most part on the minimum and maximum attainable sprinkling densities.

It is established that the quantity 'min which produces the required wetting of the heating surface without
a break in the continuity of the film during its boiling is a function of both the thermal and the geometrical
characteristics of the heating surface, and for the evaporation mode it can be represented by the equation

o 0.540.3 { \0.6 b \1.7
T'min = 70.5¢%%d% ( —do) (H— ]—00)
and for the bubble boiling by the equation
— 1.3,70.6 1)1.5 b)l'l
Tmin =8.3¢" 7, (do (1+ o) 2)

whereas I'max is determined independently of q'

T'nax = 5.45:10343-92 (3
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without the other parameters having an appreciable effect on its value,
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DETERMINATION OF TEMPERATURE OF A SPHERE
AND THERMAL DIFFUSIVITY OF THE MEDIUM FROM
TEMPERATURE MEASUREMENTS OUTSIDE THE SPHERE

A. V. Kryanev, V. E. Raevskaya, UDC 536.24.02
and V, K. Fardzinov

In a number of heat-conduction problems it becomes necessary to measure the temperature as a function
of time at points lying outside a certain volume and to reconstruct the temperature at the boundary of this
volume as a function of time.

Often the problem is still more complicated because the heat-conducting properties of the medium also
turn out to be unknown, Problems of such a type arise, in particular, if the volume at whose boundary the
temperature is reconstructed consists of a sphere formed at large depths with the help of an explosion,

In addition, the medium surrounding the cavity is often not uniform itself, and therefore the assumption
that it is uniform is a certain approximation within the framework of which one must determine the optimum
coefficient of thermal diffusivity of the homogenized medium such that one obtains the least discrepancy be-
tween the solution of the problem on the assumption of uniformity of the medium and the solution within the
framework of a model with allowance for the nonuniformity of the real medium.

In the present report the criterion for choosing the optimum coefficient of thermal diffusivity a is the
minimization with respect to @ of the nonnegative functional
t‘
7@ = { [ max T, (txa~— min Tg(T, % a)di
g XEuee Xp X=Kgyeens Xp
where [0, 7*] is the time interval of interest to us; Tg is the temperature at the surface of the sphere; xy,
.., Xp are the distances from the sphere to the points where the temperature is measured,

For each fixed set of values of (x, a) the problem of the determination of Tg as a function of the time
t€[0, T*] comes down to the solution of an integral equation of the first kind, and consequently it belongs to
the class of improper problems.,

The regularized method of successive approximations is used in the report for the solution of the integral
equation given above. On the basis of the proposed method an alogorithm was developed and a computer pro-
gram was written for the solution of the problem stated above,

An analysis of the numerical results obtained above and their comparison with experimental data showed
the efficiency and reliability of the proposed method.

Dep. 227-77, July 5, 1976,
Original article submitted March 30, 1976,
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UNSTEADY HEAT EXCHANGE DURING THE MOTION OF
POWER-LAW FLUIDS IN THE CASE OF VARIATION OF
THE HEAT-FLUX DENSITY AT THE WALL OF A
CHANNEL AND A PIPE

R. M. Sattarov UDC 536.252

The present report is devoted to a study of heat exchange in the steady laminar mode of motion of a
power-law fluid in the thermal initial section of a flat channel and of a round cylindrical pipe in the case of
variation in the heat-flux density at the wall.

In this case the problem comes down to the solution of the differential energy equation in dimensionless
form

n=1
(T —To TS 0T =Ty BT —Ty) ___©  T—Ty
3F0  TAll—(=1) T 8z - ays (1—VY) PG

’

where Ag=@2n +1)/(n +1) for w =0, A; = 3n +1)/(n +1) for w =1, T is the temperature of the moving me-
dium, T, is the temperature at the entrance to the pipe, Fo is the Fourier parameter, Y and Z are dimension-
less coordinates, and n is the nonlinearlity parameter.

The problem is solved by the boundary-layer method in conjunction with the method of characteristic
curves, for which the temperature distribution over the thickness 8 of the boundary layer was assigned in the
form of a polynomial whose coefficients were determined from the boundary conditions 8(T — T ()/8Y = —qyh/
Afor Fo>0and Y = 0whileT —Ty=0and 8(T — T()/0Y =0 for Fo > 0and Y = 6, where qy is the heat flux
density at the wall, 2h is the distance between the plates of the channel, and A is the coefficient of thermal
conductivity.

The calculations showed that the time needed for the establishment of the temperature field is less for
pseudoplastic media than for viscous and dilatant media, Inthis case a change in the nonlinearity parameter
n has an important effect on the time of establishment of the process for pseudoplastic media whereas this
change is insignificant for dilatant media, The foregoing is obviously explained mainly by the radical reor-
ganization of the temperature field, which is connected with a strong increase in the velocity gradients, for
dilatant media in comparison with viscous and pseudoplastic media.

The time of establishment of the temperature field for different n strongly depends on the length of the
initial thermal section,

This dependence increases with an increase in Z, other conditions being equal.

An example is given of calculations of the time of establishment of a steady temperature field and of the
"wall temperature at a certain distance from the start of the heated section at any time.

Dep. 223-77, November 24, 1976,
Original article submitted December 15, 1975,

SOME DATA ON THE HYDRAULIC RESISTANCE OF A PIPE
TO THE MOTION OF A HIGHLY VISCOUS LIQUID WITH THE
INJECTION OF A SOLVENT THROUGH THE POROUS WALL

Sh. A. Ershin, U. K. Zhapbasbaeyv, UDC 532,542
I. D. Molyukov, and K. I. Mukhanbetkaliev

In the transportation of highly viscous liquids the problem arises of reducing the friction near the channel
surface. Among the numerous means of affecting the liquid boundary layer [1-10] injections of a low-viscosity
liquid through the porous channel wall find application {5, 6]. The study of the flow in pipes with mass exchange
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throughthe wall is of wider interest in connection with problems of swamp drainage, subterranean irrigation,
the condensation or evaporation of liquids from the inner surfaces of heat exchangers, etc. Data of an experi-
mental study of the hydraulic resistance of a round pipe to the motion of a viscous liquid with the injection of
a solvent through the porous channel wall are presented below,

The experimental setup consists of a system of parallel pipelines with the same inner diameters and
lengths. One of them was made of solid copper tubing with an inner diameter of 4 mm and a length of 1 m.
The second consisted of a coaxial system of pipes. The inner pipe with an inner diameter of 4 mm and a wall
thickness of 1 mm was made of porous Nickonel (penetration factor K =10~ m), The outer pipe (of solid
metal) left an annular gap of 2 mm between the pipes. A solvent (kerosene) was injected into the space be-
tween pipes. A viscous liquid (oil) moved through the inner pipe. The operating parameters were varied in
the following ranges: 60 < Re = 523, 0 < Rey = 18, The pressure at the inlets and outlets of the pipelines,
the temperature, the volumetric flow rate of the transported liquid, and the total flow rate per second of
solvent through the pipe surface were measured in the experiments.

The experimental data on the liquid flow through the unary pipe obey the Hagen — Poiseuille law,

The experimental results on the flow of liquid through a porous channel with the injection of a solvent
show that the flow rate can be increased up to 40% through the injection of no more than 0.5% of solvent with
respect to the main flow,

On the basis of the data obtained it is found that the coefficient of hydraulic resistance is reduced about
twofold with the injection of a solvent through the porous channel wall.
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HYDRAULIC RESISTANCE OF GRANULAR BEDS OF
CRUSHED BAUXITE CAKES

L. N, Pavlov and Yu, I. Pavlova UDC 669,712,061

The contradictory data of many reports on the hydrodynamics of granular media are caused by the ab-
sence of a physical basis for the analogy of flows of fluids through granular media at equal Reynolds numbers.
The conclusions of these reports are used without critical analysis by many engineering offices in applied cal-
culations, onthe basis of which design orders are issued for the development of instrumental —technological
systems,

An experimental study of the hydrodynamics of granular media formed by crushed bauxite cakes made it
possible to establish that for this particular case ARe =450 uptothe maximum values of Re = 10,5 reached in
the present work.

The authors developed a method of determining the particle shape coefficient both for porous lump mate-
rials and for different kinds of column packings and natural soils.
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In the determination of the bulk (@pparent specific) weights of porous materials with particle sizes of
less than 10 mm the method of hydrostatic suspension of the particles with their preliminary saturation by
inert liquids (not entering into a chemical reaction with them) following saturation for two minutes makes it
possible to drain the liquid from the test samples. In our case this turned out to be unsuitable. When kero-
sene was used as the inert liquid a thick film was left on the rough surface of the cake grains, while in the
case of the use of benzene it evaporated rapidly. In either case the convergence in seven parallel tests was
poor. -This difficulty could be overcome by removing the excess liquid with filter paper. Another novelty

. introduced into the method was the use of a pycnometer with two:ground-glass joints: base—throat and
throat — stopper. With the throat removed the smallest diameter of the ‘opening:in the base of the pycnometer
was 12 mm, and thus it was easy to introduce cake grains (¢he maximum fraction studied was —10 + 8 mm).

The number of particles in the sample was counted down to the fraction of —0.8 + 0.63 mm inclusively.
Knowing the volume of the sample of a given narrow fraction of cake and the number of particles in it, the
average volume per particle was calculated, and taking it as a sphere the nominal particle diameter for the
given fraction was found and from it the specific surface S;.

The shape factor &, which allows for the dependence of the equivalent diameter of a particle on its shape,
was determined from the equation

S
o=t @)
where 8, is the specific surface of particles of the bed from the average particle diameter of the fraction on
the basis of a sieve analysis,

The particle shape coefficient was determined from the equation

1
%o= @)
Values of ¢ both smaller and larger than unity were obtained for bauxite cakes, which can pertain to
aluminosilicates. The authors have not encountered values of ¢ < 1 in the literature,

Dep. 225-77, December 1, 1976.
Original article submitted July 7, 1976.

STATIONARY FRONT IN THE MOVEMENT OF A MIXTURE
THROUGH A POROUS MEDIUM WITH ALLOWANCE FOR
HEAT RELEASE

L. K. Tsabek UDC 532,546

Numerical and analytical solutions of the equations of isothermal and nonisothermal sorption dynamics
for isotherms and thermal sorption functions of arbitrary form are analyzed for model A the pore size of the
porous grain is far larger than the sizes of the sorbate molecules) and model B ¢he pore size of the porous
grain is comparable with the sizes of the sorbate molecules). It is shown that with infinitely large values of
the coefficients of heat and mass exchange the system of equations of motion of a mixture through a porous
medium admits of the existence of only two types of invariant solutions: solutions of the traveling-wave type
and self-similar solutions of the spreading-wave type. For the existence and uniqueness of self-similar solu-
tions of the spreading-wave type in the isothermal and nonisothermal cases, respectively, inthe presence of
a thermal sorption equation f(c, T) of arbitrary form it is necessary and sufficient to satisfy the following con-
ditions:

d4/dcd > 0, (A — a)/Q + (0A;/0T)/(0hi/dc) > O, )

Ai,2= Bt (B2—aH)!/?, B=(a+H+QF)2, H=(3/oc)-t, F=—H&/aT.

The second condition (1) is a limitation on the thermal function of physical sorption, If the conditions (1)-(3)
are not satisfied for any thermal function found from thermodynamic considerations then such a thermal func-
tion does not have physical meaning.
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The sections of isotherms orthermalfunctions which admit of the existence of solutions of the traveling-
wave type will be called convex sections. If A(ci) = wi = A(ci+) (Wi is the velocity of the traveling wave),then
the necegsary and sufficient conditions for convexity of a section ¢y = ¢ = ¢j 4+ of the thermal equation have
the form

w; =minwy, 2 (¢;) < ©@; <A (i) (2)
»
If
wi =& (€;) =M {ci4q), H® (¢;) = H® (¢;) = «+» = HE-D (¢;) =0,
H®) (i) = HO (cpp) =+ + ="HPH {035;) = 0,

then the conditions of convexity for a thermal equation of arbitrary form have the form

(¢ —ci) H® (¢;) < 0, (¢ c140) HP (¢514) > 0 (5, P even), @)

w; =minwp, HE (¢;) <0, HP) (¢;14) > 0 (s, p 0dd),
P

P
H® (¢) = E CRATIf®) (c, T)/@cP—™IT™), A, = Q/(w; —a).

m=0

In the isothermal case under the conditions (3) we have AIPIm >9= 0. For the equations of isothermal and non-
isothermal desorption dynamics the signs must be reversed in the inegualities {(1)-(3).

Analytical expressions are found for invariant solutions of the traveling-wave and spreading-wave types
of isothermal and nonisothermal sorption dynamics for isotherms and thermal equations of arbitrary form.
The equations of sorption dynamics were integrated by the difference system using a computer for various
isctherms of arbitrary form and different thermal equations of arbitrary form. It is shown that in the non-
isothermal case for concave and linear thermal equations the solutions are represented inthe form ofinvari-
ant solutions of traveling waves and spreading waves simultaneously.

Dep. 388-77, December 17, 1976.
Original article submitted January 3, 1975,

NONADIABATIC DYNAMICS OF PHYSICAL SORPTION

L. K. Tsabek UDC 532.546

Numerical and analytical solutions of nonadiabatic sorption and desorption dynamics in the presence of
thermal sorption functions of arbitrary form are analyzed for models A and B of one-component and multicom-
ponent sorbing mixtures. It is shown that the system of equations of nonadiabatic sorption dynamics strictly
admits of the existence of oniy the mode of traveling waves. The conditions of convexity or the conditions of
existence of invariant solutions of the traveling-wave type and the conditions of concavity or the conditions of
existence of self~-similar invariant solutions of the spreading-wave type for thermal functions of arbitrary form
are the same in the nonadiabatic and isothermal cases. The conditions of convexity for multicomponent non-
adiabatic sorption dynamics have the form

i (¢®) > 1/wfP) > pi(c®D), ) =c(y > ),
B (cPHY) > 1@l > Py (6®),  cPH) = (y > — o), 1)
P — msin o),  y=z—wy,
where pj are the eigenvalues of the matrix A, = 8y (c, 0)/3¢k. If
ile®) = /2P, u(cP+D) = 1/,
GL2(e®) = GLB(e®) = - o =GV () = 0,
6P (ePri)= GENeP)e= ... = GE(cr ) =0, 2)
v s : s
CRIGEE) (nl R (©)) 0O (e, O / (P lacmp )

mp=1 p= .
Rin(e) = ri(@)ri(e),
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where rg)(c) is a right-handed eigenvector of the matrix Ap corresponding to the eigenvalue uj, then the
conditions of convexity have the form

(6, — P GNP > 0, (- c?) G& (c?+1) < 0 (s, g— even),
@)
G c) > 0, G®(cP+H) <0 (s, g— odd),

m=1,2, ..., 8

For iscthermal and nonadiabatic desorption-dynamics the signs must be reversed in the inequalities (1) and 3).
Analytical expressions are presented for calculating invariant solutions of thetraveling-wave type and of the
type of quasi-self-similar solutions of spreading waves for thermal equations of arbitrary form. The equations
of nonadiabatic sorption and desorption dynamics for different coefficients of heat exchange with the external
medium and the equations of nonadiabatic three-component sorption dynamics were integrated on a computer

by a difference system. An analysis of the numerical solutions showed that the dependence of the temperature
on the concentration in a traveling-wave front can be approximately described by a quadratic function. Solu-
tions are found for the steady-state equations of motion of a sorbed multicomponent mixture through a moving
porous medium in the adiabatic and nonadiabatic cases. It is shown that using the conditions (2) and (3) one
can find the limiting exit concentrations at the exit from a moving porous medium,

Dep. 389-77, December 27, 1976.
Original article submitted December 2, 1975,

APPLICATION OF PERTURBATION THEORY TO THE
CALCULATION OF THE DIFFUSION POTENTIAL AT AN
ION-EXCHANGE MEMBRANE

V. G. Veresov UDC 541,183,12
The complete system of equations describing the movement of ions in an ion-exchange membrane with

allowance for the self-consistent field and on the assumption of ideal behavior of the ions in the membrane
phase has the form [1]

dc;*‘ L. 49
]‘+ = u;RT —‘&;—‘—l— upcyt Fd—x s

dc,” dp
Iz = wRT i — Ry, o

(1)

d F (% y
2¢ e _ —
e (T Y ).
j=1 k=1
2=
k

One is able to transform (1) into an ordinary third-order differential equation which depends only on the
potential:
a2

Y_, Sk %y % pEy % S VE (G Fiﬂ. ‘ﬂ' av 2
(A*_B*)M_ajg—g—j‘{(cd*—,‘-co )4 (A% + B¥) £ 4 oX* (¥ — ¥} & + 2[((1&) —<d§ )o_]l. (2)

With small @ @ = Ap/d), where Ap is the Debye length and d is the thickness of the membrane, one is
able to obtain an asymptotic solution of (2) using the methods of perturbation theory. The nontriviality consists
in the singular character of the problem, which leads to the appearance of regions of the boundary-layer type
near the membrane boundary. Confining oneself to the first two terms, one is able to write a uniformly valid
expression for the potential of the inner membrane:

_ ey (A+B)X
A B+ 0 il 0 -+ i +qf[0]_—l¥0
A—B ALB ©X RTwX
[‘I"w‘yolu,v““ ~— In e -
A+ B A—B 75
AL B' wX
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l// " RTem [ FE, RTA: B_ ]><

P + cf) (g + ) )
o | A8 ( dx ),
lRrox ) [t (ATBd NG
0 — + (Yo — )
oX RTGX J

l/ RTep FE, A—B /4'{F2(c -+ )
TV R ra) | BT RTE ) [T } RTem :

Here ¥[y) is the solution of the transcendental Teorell equation [2],
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+
Jis Jeo fluxes uj, vk, mobilities; ¢, potential; F, Faraday number; &y, dielectric constant; cj, ck,
concentrations; Ap = VRTepn/81F%;
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X, concentration of immobilized ions in membrane; y*, ¥~, coefficients of distribution,
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NUMERICAL INTEGRATION OF THE EQUATION OF
OSCILLATIONS OF A VISCOELASTIC MEDIUM

E. E. Rafales-Lamarka, A. S. Petrov, UDC 666.015:691.15
and B, A. Lishanskii

The given problem came up in the study of processes of vibrational freatment of disperse systems in
closed vessels [1-4].

The Stokes equation of isothermal motion of an incompressible, viscous, Newtonian liquid in projection
onto the x axis, with allowance for the fact that E (9%e/8x?) is introduced in place of 8p/8x [5], where E is the
elastic modulus of an elementary volume of medium and e is the displacement of an element of medium, takes
the form

-a_v___cz_a.zf_ v(.?z_v._{__aiz_}.) (]_)
a ~ ox? axz ' oy ) )

where v = 9e/8t is the velocity of movement of an elementary volume of medium; ¢ = V E/p is the velocity of
sound in the medium; p is the density; v is the coefficient of kinematic viscosity. ‘

For the numerical integration of the equation obtained we represent it in the difference form, replacing
the first and second derivatives by finite differences in dimensionless quantities, for which we designate
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where A is the amplitude of the oscillations; u is the dimensionless displacement of an elementary volume;
w is the dimensionless velocity; 6t is the dimensionless step in time; 6t is the integration step intime; K

is the number of time steps in an oscillation period.

- With allowance for (2) Eq. (1) takes the form

vof Az + vét A2 ot o2t A2 3)

&t
wa*’ =yt FIer o FYor]

The conditions of stability of the solution of an equation of the hyperbolic type (3) are represented in the
form ¢ = 6x/6t [6], which contradicts the physical essense of the process of propagation of oscillations ina
viscoelastic medium. We have therefore assumed that & = §y = cét.

In the numerical integration of (3) we took into account the limitations on the strength of the perturbing
action on an element of a viscoelastic medium and on the movement of an elementary volume of medium., We
also used the approximation of the second derivatives in (3) by difference equations, in which the approximating
function is represented in the form of a total quadric obtained by the method of least squares, as wellas a
model of relaxation smoothing in a viscoelastic medium.

As a result of the studies we obtained a similarity criterion in the form K = nw/E making it possible to
model the process of propagation of oscillations in a viscoelastic medium in the presence of nonlmear boundary
conditions (n is the ccefficient of dynamic viscosity).
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PROBLEMS OF HEAT CONDUCTION FOR A ROD WITH
TIME-DEPENDENT COEFFICIENTS OF HEAT EXCHANGE
AND THEIR APPLICATIONS

V. I. Igonin and V. M. Khorol'skii UDC 536.2

We examine the problem of determining the temperature field with variable coefficients of heat exchange
through the ends and lateral surfaces of a semibounded rod:

sg= Oz () [ — & ()] + % P; 105 x>0, @)
—Mrlgmp= [, u@O () —u )], ult=o= 1 (x), 2)

where A and w are the coefficients of thermal conductivity and thermal diffusivity; a and v are the variable
coefficients of heat exchange; y is the density distribution of heat sources; u¢t) =u(0, t).

Designating the unknown heat flux ) as q&) = —Auxly =, using the Green function G (x, &, t)' of the
second boundary problem of heat conduction we write the integral representation of the problem:
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t
Here F(x, t) is a known function; h¢) = exp [~ "v(r)d T].
[}
Substituting into (3) the heat flux through the right side of Eq. (2) and taking x = 0, we obtain a nonlinear
integral equation with a weak singularity relative to the temperature:
t

u(t) =F@®)+8 |

o fn u(@IAQ)
0

| N 4
RO Vi—t [8 (¥) — u (v)] dr, "

where F&) =F(0, t); B =(@1/A)V1/w.

For the solution of Eq. (4) we propose an approximate recurrent method which is convenient for making
numerical calculations. The unknown function ut) and all the known functions are represented in the form of
step functions

n—1

ut) = D) [E(t—1) —E(t— 1], (5)

i=0

where E ¢) is a unit function. Substituting (5) into Eq. () and taking t =tp, we obtain

n—1
© h(tn)
ulty) = —
A P ht;)

@it w(E)] 18 (1) — (D] Y (bns 1) (6)

Here
t
v (tn» li) =

z

53'1 dr
i

I
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th_ T t" i+ i

Setting n = 0, ..., nsuccessively in (6), we obtain a system of recurrent equations of triangular form
from which the values of uj) are determined successively, starting with the first uty) = F&,), after which the
heat flux is found from Eq. (2) and then the thermal field from (3).

The boundary problem with variable coefficients of heat exchange at the boundaries of a finite rod is
analyzed similarly, With certain assumptions the solutions obtained were used to find the thermal conditions
of gas turbine blades operating in transitional regimes.

The results of the analytical calculations were compared with data obtained by modeling.
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SOLUTION OF MIXED PROBLEMS OF STEADY HEAT
CONDUCTION FOR COMPOSITE CIRCULAR REGIONS
IN THE PRESENCE OF NONIDEAL THERMAL CONTACT

A. M. Makarov and V. R. Romanovskii UDC 536.24

Many problems of thermophysics which are of practical interest are connected with the study of heat-
conduction processes in regions possessing circular symmetry. The determination of the steady heat field of
a circular cylinder is a well-studied problem. There are a number of problems, however, which have been
little studied before, such as problems connected with the determination of heat fields in nonideally conjugate
regions with variable boundary conditions.

In the present report we examine the problem of determining the steady temperature field in a piecewise-
orthotropic thermally insulating cylinder in the presence of nonideal nonuniform thermal contact at the contact
surfaces:

=—PH (p, p), PEMi-1. pi), i=T1, N; ¢g (0, 2m)

op

AP 9 ( a_mz) A et
% p* 0g*
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with the boundary conditions

nyy (@) 2D (9, @) + nye (w) (po ¢) = f; (g),

nyy (g1 V) (o @) + n»z(tv) (pv- ¢) = fa ()

and the conjugation conditions (p = o)

it — gty =p0 “—-—— v
“ R % (@)

}( R o Pkl du(* — A0 _..___6“(‘) = X(H (¥),

(?p P dp
=[N =T,
where A(l) and A& are assigned parameters of the problem; P, np,qs fps v®), and x@) are known piece-
wise-s mooth functions; Rg ) is the contact resistance of the i-th layer.
The initial problem is solved using a finite integral transformation with respect to the variable ¢. In

the image space the problem is reduced to an infinite system of linear algebraic equations which are solved
by the reduction method. The convergence of the approximate solution is demonstrated.
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